Megaprocessor

Instruction Set

James Newman
May 2016

instruction_set_v0_1.doc Page 1 of 57

Introduction

This document describes the instruction set for the Megaprocessor. They are listed in alphabetical order
(by assemble mnemonic).

The following abbreviations are used:

cc Condition Code. Coded by a 4 bit code in the range 2..15.

RA One of the general purpose registers used as a destination. Coded with a 2 bit value.
RB One of the general purpose registers used as a source. Coded with a 2 bit value.

RC Either RO or R1 may be source or destination. Coded with a 1 bit value.

RI Either R2 or R3 used as index. Coded with a 1 bit value: O for R2, 1 for R3.
displ 8 bit signed displacement. Ranges -128..127.

dir Direction. Coded with a 1 bit value. 0 = load (memory to Reg), 1 = store (Reg to memory)
Sz Operand size. Coded with a 1 bit value. 1=Byte, 0=Word
sgn Selects signed/unsigned operation. Coded with a 1 bit value. 0 = unsigned, 1 = signed.

Note the assembler syntax is
instruction destination, source

instruction_set_v0_1.doc Page 2 of 57

Summary

Group: MOVER AND XOR OR ADD ADDQ SUB CMP
0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70

0x00 sxt r0 test rO xor r0,r0 inv r0 add r0,r0 addq r0,#2 neg r0 abs r0
0x01 move r1,r0 and r1,r0 xor r1,r0 orrl,r0 add r1,r0 addq rl,#2 sub r1,r0 cmp rl,r0
0x02 move r2,r0 and r2,r0 xor r2,r0 orr2,r0 add r2,r0 addq r2,#2 sub r2,r0 cmp r2,r0
0x03 move r3,r0 and r3,r0 xor r3,r0 orr3,r0 add r3,r0 addq r3,#2 sub r3,r0 cmp r3,r0
0x04 move r0,rl and r0,rl xor r0,rl orr0,rl add r0,r1 addq r0,#1 sub r0,rl cmp r0,rl
0x05 sxtrl testrl xor rl,rl invrl add r1,r1 addq rl,#1 negrl absrl
0x06 move r2,rl and r2,rl xorr2,rl orr2,rl add r2,r1 addq r2,#1 sub r2,rl cmpr2,rl
0x07 move r3,rl and r3,rl xor r3,rl orr3,rl add r3,rl1 addq r3,#1 sub r3,rl cmpr3,rl
0x08 move r0,r2 and r0,r2 xor r0,r2 orr0,r2 add r0,r2 addq r0,#-2 sub r0,r2 cmp r0,r2
0x09 move rl,r2 and r1,r2 xor rl,r2 orrl,r2 add r1,r2 addq rl,#-2 sub r1,r2 cmprl,r2
O0x0A sxt r2 test r2 Xor r2,r2 invr2 add r2,r2 addq r2,#-2 neg r2 abs r2
0x0B move r3,r2 and r3,r2 xor r3,r2 orr3,r2 add r3,r2 addq r3,#-2 sub r3,r2 cmp r3,r2
0x0C move r0,r3 and r0,r3 xor r0,r3 orr0,r3 add r0,r3 addq r0,#-1 sub r0,r3 cmp r0,r3
0x0D move r1,r3 and r1,r3 xor rl,r3 orrl,r3 add r1,r3 addq rl,#-1 sub r1,r3 cmprl,r3
OxOE move r2,r3 and r2,r3 xor r2,r3 orr2,r3 add r2,r3 addq r2,#-1 sub r2,r3 cmpr2,r3
OxOF sxtr3 testr3 xor r3,r3 invr3 add r3,r3 addq r3,#-1 negr3 absr3

Group: Indirect Postinc Stack rel Absolute Push/Pop Immediate Branch Misc

0x80 0x90 0xAO 0xBO 0xCO 0xDO 0xEQ 0xFO

0x00 Id.w r0,(r2) Id.w r0,(r2++) Id.w r0,(sp+m) Id.w r0,addr pop r0 Id.w r0,#data buc dd move r0,sp
0x01 Id.w r1,(r2) Id.w rl,(r2++) Id.w r,(sp+m) Id.w r1,addr pop rl Id.w rl,#data bus dd move sp,r0
0x02 Id.w r0,(r3) Id.w r0,(r3++) Id.w r2,(sp+m) Id.w r2,addr pop r2 Id.w r2,#data bhi dd jmp (r0)
0x03 Id.w r1,(r3) Id.w r1,(r3++) Id.w r3,(sp+m) Id.w r3,addr pop r3 Id.w r3#data bls dd jmp addr
0x04 Id.b r0,(r2) Id.b r0,(r2++) Id.b r0,(sp+m) Id.b r0,addr pop ps Id.b r0,#data bce dd andi ps,#data
0x05 Id.br1,(r2) Id.b r1,(r2++) Id.b r1,(sp+m) Id.b r1,addr (nop) Id.b r1,#data bcs dd ori ps,#data
0x06 Id.b r0,(r3) Id.b rO,(r3++) 1d.b r2,(sp+m) Id.b r2,addr ret Id.b r2,#data bne dd add.b sp,#data
0x07 Id.b r1,(r3) Id.b r1,(r3++) Id.b r3,(sp+m) Id.b r3,addr reti Id.b r3#data beq dd sqrt
0x08 st.w (r2),r0 st.w (r2++),r0 st.w (sp+m),r0 st.w addr,r0 push r0 shift r0,descr bvc dd mulu
0x09 st.w (r2),r1 st.w (r2++),rl st.w (sp+m),rl st.w addr,rl push rl shift r1,descr bvs dd muls
0x0A st.w (r3),r0 st.w (r3++),r0 st.w (sp+m),r2 st.w addr,r2 push r2 shift r2,descr bpl dd divu
0x0B st.w (r3),r1 st.w (r3++),rl st.w (sp+m),r3 st.w addr,r3 push r3 shift r3,descr bmi dd divs
0x0C st.b (r2),r0 st.b (r2++),r0 st.b (sp+m),r0 st.b addr,r0 push ps bit r0,descr bge dd addx r0,rl
0x0D st.b (r2),r1 st.b (r2++),r1 st.b (sp+m),ri st.b addr,r1 trap #n bit r1,descr blt dd subx r0,rl
0x0E st.b (r3),r0 st.b (r3++),r0 st.b (sp+m),r2 st.b addr,r2 jsr (r0) bit r2,descr bgt dd negx r0
OxOF st.b(r3),r1 st.b (r3++),r1 st.b (sp+m),r3 st.b addr,r3 jsr addr bit r3,descr ble dd nop

instruction_set_v0_1.doc

Page 3 of 57

ABS RA

Operation:
if (RA<0)
-RA = RA
end if

Description:

The contents of the general purpose register are replaced by the absolute. The condition codes are set
according to the result.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x7, CMP RA RA
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

| - Not affected

N ? Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y ? | Setif overflow is generated. Cleared otherwise

X * | As per carry bit.

C 0? | Setif carry is generated. Cleared otherwise
Example:

RO[8000] R1[D4CC] R2[2B35] R3[A6GAB] PC[007D] SP[233B] PS[71(CX...ID.)]
007C: 65 :ABS RO

RO[8000] R1[D4CC] R2[2B35] R3[A6GAB] PC[007E] SP[233B] PS[7B(CXV.NID.)]
007D: 65 :ABS R1

RO[8000] R1[2B34] R2[2B35] R3[A6AB] PC[007F] SP[233B] PS[71(CX...ID.)]
007E: 65 :ABS R2

RO[8000] R1[2B34] R2[2B35] R3[A6AB] PC[0080] SP[233B] PS[41(..... ID.)]

instruction_set_v0_1.doc Page 4 of 57

ADD RA,RB

Operation:
RA + RB = RA

Description:

The contents of the source general purpose register are added to the destination general purpose
register. The condition codes are set according to the result. The source and destination registers may
be the same.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x4, ADD RB RA
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Set if overflow is generated. Cleared otherwise

As per carry bit.

AQIX|<|IN|Z|—
®| %] %] %| %

Set if carry is generated. Cleared otherwise

Example:
RO[0000] R1[848B] R2[FFFF] R3[A6AB] PC[0075] SP[233B] PS[43(....NID.)]
0074: 4D :ADD R1,R3

RO[0000] R1[2B36] R2[FFFF] R3[A6AB] PC[0076] SP[233B] PS[79(CXV..ID.)]

instruction_set_v0_1.doc Page 5 of 57

ADD SP, #immediate data

Operation:
SP + data = SP

Description:

The immediate value is added to the stack pointer. The immediate value is an 8 bit signed value.

Format:
7 | 6 | 5 | 4 3 0
Code = 0xF, miscellaneous 0
Imm(7:0)
Length/Cycles:

2 bytes; 2 cycles

Condition Codes:

1 - Not affected

N - Not affected

Z - Not affected

\'% - Not affected

X - Not affected

C - Not affected
Example:

RO[010C] R1[002B] R2[552B] R3[5678] PC[011F]
011E: F6 12 :ADD SP, #0x12

RO[010C] R1[002B] R2[552B] R3[5678] PC[0121]
0120: F6 EE :ADD SP, #OxEE

RO[010C] R1[002B] R2[552B] R3[5678] PC[0123]

instruction_set_v0_1.doc

Page 6 of 57

ADDQ

Operation:

Description:

The immediate operand is added to the destination general purpose. The condition codes are set

RA, #small

RA + immediate = RA

according to the result.

Format:

7]

6 | 5 | 4

3|

2

Code = 0x5, ADDQ

small code

RA

Small code

00

2

01

1

10

-2

11

-1

INC RA is an alias for ADDQ R1, #1
DEC RA is an alias for ADDQ R1, #-1

Length/Cycles:
1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Set if overflow is generated. Cleared otherwise

As per carry bit.

Qx| <|IN|Z|—
®| %] %] %| %

Set if carry is generated. Cleared otherwise

Example:

RO[0000] R1[2B36] R2[FFFF] R3[A6AB] PC[0076]

0075: 4D

RO[0000] R1[2B34] R2[FFFF] R3[A6AB] PC[0077]

:ADDQ R1, #-2

SP[233B]

SP[233B]

PS[71(CX...ID.

PS[79(CXV..ID.)]

)]

instruction_set_v0_1.doc

Page 7 of 57

ADDX RO, R1

Operation:
RO+R1+X = RO

Description:
The contents of RO, R1 and the X flag are added and the result is stored in R0O. The condition codes are
set according to the result.

Format:
7 | 6 | 5 | 4 1 0
Code = 0xF, miscellaneous 1 1 0 0
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Cleared if result is non-zero, otherwise unchanged

Set if overflow is generated. Cleared otherwise

As per carry bit.

Qx| <|IN|Z|—
w| %] %] %] %]

Set if carry is generated. Cleared otherwise

NB. If the Z flag is set before the start of an operation then it will achieve correct test for a zero result
after completing an extended precision operation.

Example:

RO[151A] R1[002B] R2[552B] R3[5678] PC[00F8] SP[8321] PS[10(.X......)1
00F7: FC :ADDX RO, R1

RO[1546] R1[002B] R2[552B] R3[5678] PC[00F9] SP[8321] PS[00(........)]
00F8: FC :ADDX RO, RI1

RO[1571] R1[002B] R2[552B] R3[5678] PC[O0FA] SP([8321] PS[00(........)1

instruction_set_v0_1.doc Page 8 of 57

AND RA,RB

Operation:
RA & RB = RA

Description:

The bitwise AND of the source and destination general purpose registers is stored in the destination.

The condition codes are set according to the result. The source and destination registers must be
different.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x1, AND RB RA
RA #RB
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared
Example:
RO[F059] R1[00A2] R2[4826] R3[7E04] PC[67CA] SP[233B] PS[CO(...... DU)]
67C9: 1B :AND R3, R2
RO[F059] R1[00A2] R2[4826] R3[4804] PC[67CB] SP[233B] PS[C2(....N.DU)]

instruction_set_v0_1.doc

Page 9 of 57

AND PS, #immediate data

Operation:
PS & data = PS

Description:
The immediate value is ANDed with the PS register.

Format:
7 | 6 | 5 | 4 3 1 0
Code = 0xF, miscellaneous 0 1 0 0
Imm(7:0)
Length/Cycles:

2 bytes; 2 cycles

Condition Codes:

* | Set as per result of operation

Set as per result of operation

Set as per result of operation

Set as per result of operation

Set as per result of operation

Qx| <|IN|Z|—
®| %] %] %| %

Set as per result of operation

Example:

RO[015E] R1[002B] R2[552B] R3[5678] PC[O0OEC] SP[0068] PS[27(C..ZNI..)]
00EB: F4 DE :AND PS, #0xDE

RO[015E] R1[002B] R2[552B] R3[5678] PC[OOEE] SP[0068] PS[06(...ZN...)]

instruction_set_v0_1.doc

Page 10 of 57

Arithmetic Shift: ASL, ASR

Operation:

RA shifted by amount = RA
weight of n bits of RA = RA

Description:

The specified general register is shifted in the given direction for the required number of bits. The last
bit shifted out is copied to C and X. For left shifts the input bit is 0. For right shifts the input bit is a

replication of the sign bit of the register.

The shift amount may be specified in two ways:
1. as an immediate operand, this is a 5 bit signed value. (In the assembler use of the ASR

instruction is translated to ASL and the immediate value is negated to compensate).
2. as aregister, Rp, in which case the least significant 5 bits are used and treated as a signed
value. These 5 bits are negated if the ASR instruction was used.

If the shift count is specified by a register then the instruction may be qualified with .WT. In this case
the number of 1 bits that are shifted out of the least significant bit of the operand are counted and the

result stored in RA.

ASL: | C MSB LSB
X
Counter
ASR: » MSB LSB
l —»
Counter
Format:
ASd RA, #n_to_shift
d may be L or R
7 | 6 | 5 | 4 2 | 0
Code = 0xD, immediate 0 RA
fn=01, arithmetic | I/R=0 | n_to_shift
ASd RA, Rp
ASA.WT RA, Rp
d may be L or R
7 | 6 | 5 | 4 2 | 0
Code = 0xD, immediate 0 RA
fn=01,arithmetic | T/R=1 | LR 0 Rp

instruction_set_v0_1.doc

Page 11 of 57

Encoding:

0 1
I/R immediate register
L/R left right
w shift weight

Length/Cycles:
2 bytes, 4 + 1 per shift cycles

Condition Codes — weight not selected:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

v * | Set if MSB changes at any time during shift,
cleared otherwise

X * | Set according to last bit shifted out of operand,
not affected for a shift of zero.

C * | Set according to last bit shifted out of operand,

cleared for a shift of zero.

Condition Codes — weight selected:

Not affected

Always cleared

Set if result is zero, cleared otherwise

Always cleared

Always cleared

QX[<IN Z|—
x|lo|lo| x|lof

Set according to least significant bit of result,
i.e. parity of the n bits of the operand.

Example:
RO[1234]
01A3: D8

RO[1234]
01A5: D8

RO [48D0]
01A7: D8

RO[1234]
01A9: D8

RO[48D0]
01AB: D9

RO[48D0]
01AD: D9

RO[48D0]
01AF: D9

RO [48D0]

R1[9ABC] R2[9AFD] R3[FFFE] PC[01A4]
40 :ASL RO, #0

R1[9ABC] R2[9AFD] R3[FFFE] PC[01A6]
42 :ASL RO, #2

R1[9ABC] R2[9AFD] R3[FFFE] PC[O01A8]
63 :ASL RO, R3

R1[9ABC] R2[9AFD] R3[FFFE] PC[01lAA]
73 :ASR RO, R3

R1[9ABC] R2[9AFD] R3[FFFE] PC[01lAC]
62 :ASL R1, R2

R1[F357] R2[9AFD] R3[FFFE] PC[OlAE]
6A :ASL.WT R1, R2

R1[0003] R2[9AFD] R3[FFFE] PC[01BO]
6A :ASL.WT R1, R2

R1[0002] R2[9AFD] R3[FFFE] PC[01B2]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

PS[02(....N...)]
PS[O00(....n...)]
PS[O0 (...)]
PS[O00(........)]
PS[O0(....n...)]
PS[32(CX..N...)]
PS[20(C.......)]
PS[O0(..vun..)]

instruction_set_v0_1.doc

Page 12 of 57

Bcec target

Operation:

if (condition true)

end if

Description:

PC + displacement

= PC

The status flags are tested according to the condition. If the condition is met then the displacement is
added to the program counter. The displacement is an 8 bit signed value.

Format:
7 | 6 | 5 | 4 3 2 | 1 | 0
Code = OxE, branch cc
displacement
Mnemonic Condition Coding Test

UC User Clear 0x00 ~U
US User Set 0x01 U
HI High 0x02 (~C) & (~7)
LS Low or Same 0x03 Clz

CC/HS Carry Clear 0x04 ~C

CS/LO Carry Set 0x05 C
NE Not Equal 0x06 ~Z
EQ Equal 0x07 Z
VC Overflow Clear 0x08 ~V
VS Overflow Set 0x09 \
PL Plus 0x0A ~N
MI Minus 0x0B N
GE Greater or Equal 0x0C N&V)I| (~N & ~V)
LT Less Than 0x0D N&~V)|I (~N&YV)
GT Greater Than 0x0E N&V&~7)| (~\N &~V & ~7)
LE Less Or Equal 0xOF ZIWN&~V)I(~N &V)

Length/Cycles:

2 bytes, 3 cycles if branch taken, 2 cycles if not

Condition Codes:

- Not affected

- Not affected

- Not affected

- Not affected

- Not affected

QX< IN|Z |~

- Not affected

ins

truction_set_v0_1.doc

Page 13 of 57

Example:

RO[015E] R1[002B] R2[552RB]
00E2: E4 01 :BCC 0xO00ES5

RO[015E] R1[002B] R2[552B]
00E4: E5 02 :BCS 0x00E8

RO[015E] R1[002B] R2[552B]
00E8: FF :NOP

RO[015E] R1[002B] R2[552B]
00E9: E5 FD :BCS 0x00E8

RO[015E] R1[002B] R2[552B]

R3[5678]

R3[5678]

R3[5678]

R3[5678]

R3[5678]

PC[00E3]

PC[00E5]

PC[00E9]

PC[00EA]

PC[00E9]

SP[0068]

SP[0068]

SP[0068]

SP[0068]

SP[0068]

PS[23(C...

PS[23(C..

PS[23(C...

PS[23(C..

PS[23(C..

NI..

NI..

NI..

.NI..

NI..

instruction_set_v0_1.doc

Page 14 of 57

BCHG

Operation:
~(<bit number> of RA) = <bit number> of RA

Description:

A bit in the specified general register is tested and its value used to update the Z flag (if it is O then Z is
set, if it is 1 then Z is cleared). The bit is then inverted. The bit number may be specified as an
immediate value, or from the bottom four bits of a general purpose register (which may be the same
one).

Format:
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn =01 | IR=0 | 0 bit_number
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn =01 | IR=1 | 0 Rp
Encoding:
0 1
I/R immediate register
Length/Cycles:

2 bytes, 3 cycles

Condition Codes:

I - Not affected

N Not affected

Z * | Setif specified bit is zero, cleared otherwise

A\ - Not affected

X - Not affected

C - Not affected

Example:

RO[0002] R1[0008] R2[0006] R3[5678] PC[0139] SP[8321] PS[10(.X......)]
0138: DE 60 :BCHG R2, RO

RO[0002] R1[0008] R2[0002] R3[5678] PC[013B] SP[8321] PS[10(.X......)]
013A: DE 61 : BCHG R2, R1

RO[0002] R1[0008] R2[0102] R3[5678] PC[013D] SP[8321] PS[1l4(.X.Z....)]
013C: DE 41 : BCHG R2, #1

RO[0002] R1[0008] R2[0100] R3[5678] PC[013F] SP[8321] PS[10(.X......)]

instruction_set_v0_1.doc Page 15 of 57

BCLR

Operation:
0 = <bit number> of RA

Description:

A bit in the specified general register is tested and its value used to update the Z flag (if it is O then Z is
set, if it is 1 then Z is cleared). The bit is then set to 0. The bit number may be specified as an
immediate value, or from the bottom four bits of a general purpose register (which may be the same
one).

Format:
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn=10 | IR=0 | 0 bit_number
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn=10 | IR=1 | 0 Rp
Encoding:
0 1
I/R immediate register
Length/Cycles:

2 bytes, 3 cycles

Condition Codes:

I - Not affected

N Not affected

Z * | Setif specified bit is zero, cleared otherwise

A\ - Not affected

X - Not affected

C - Not affected

Example:

RO[0002] R1[0008] R2[0006] R3[5678] PC[0129] SP[8321] PS[10(.X......)]
0128: DE A0 :BCLR R2, RO

RO[0002] R1[0008] R2[0002] R3[5678] PC[012B] SP[8321] PS[10(.X......)]
012A: DE Al :BCLR R2, R1

RO[0002] R1[0008] R2[0002] R3[5678] PC[012D] SP[8321] PS[1l4(.X.Z....)]
012C: DE 81 :BCLR R2, #1

RO[0002] R1[0008] R2[0000] R3[5678] PC[012F] SP[8321] PS[10(.X......)]

instruction_set_v0_1.doc Page 16 of 57

BSET

Operation:
1 = <bit number> of RA

Description:

A bit in the specified general register is tested and its value used to update the Z flag (if it is O then Z is
set, if it is 1 then Z is cleared). The bit is then set to 1. The bit number may be specified as an
immediate value, or from the bottom four bits of a general purpose register (which may be the same
one).

Format:
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn=11 | IR=0 | 0 bit_number
7 | 6 | 5 | 4 3 2 1 | 0
Code = 0xD, immediate 1 1 RA
fn=11 | IR=1 | 0 Rp
Encoding:
0 1
I/R immediate register
Length/Cycles:

2 bytes, 3 cycles

Condition Codes:

I - Not affected

N Not affected

Z * | Setif specified bit is zero, cleared otherwise

A\ - Not affected

X - Not affected

C - Not affected

Example:

RO[0002] R1[0008] R2[0006] R3[5678] PC[0131] SP[8321] PS[10(.X......)]
0130: DE EO :BSET R2, RO

RO[0002] R1[0008] R2[0106] R3[5678] PC[0133] SP[8321] PS[10(.X......)]
0132: DE E1 : BSET R2, R1

RO[0002] R1[0008] R2[0106] R3[5678] PC[0135] SP[8321] PS[1l4(.X.Z....)]
0134: DE C1 : BSET R2, #1

RO[0002] R1[0008] R2[0106] R3[5678] PC[0137] SP[8321] PS[10(.X......)]

instruction_set_v0_1.doc Page 17 of 57

BTST

Operation:

Description:

test <bit number> of RA

A bit in the specified general register is tested and its value used to update the Z flag (if it is O then Z is
set, if it is 1 then Z is cleared). The bit number may be specified as an immediate value, or from the
bottom four bits of a general purpose register (which may be the same one).

Format:
7 | 6 | 5 | 4 | 0
Code = 0xD, immediate 1 1 RA
fn = 00 | IR=0 | 0 bit_number
7 | 6 | 5 | 4 3 2 | 0
Code = 0xD, immediate 1 1 RA
fn = 00 | IR=1 | 0 0 0 Rp
Encoding:
0 1
I/R immediate register
Length/Cycles:
2 bytes, 3 cycles
Condition Codes:
| - Not affected
N - Not affected
Z * | Setif specified bit is zero, cleared otherwise
\ - Not affected
X - Not affected
C - | Not affected
Example:
RO[0002] R1[0008] R2[0006] R3[5678] PC[0141] SP[8321] PS[10(.X......)]
0140: DE 20 :BTST R2, RO
RO[0002] R1[0008] R2[0006] R3[5678] PC[0143] SP[8321] PS[10(.X......)]
0142: DE 21 : BTST R2, R1
RO[0002] R1[0008] R2[0006] R3[5678] PC[0145] SP[8321] PS[14(.X)]
0144: DE 01 : BTST R2, #1
RO[0002] R1[0008] R2[0006] R3[5678] PC[0147] SP[8321] PS[10(.X......)]

instruction_set_v0_1.doc

Page 18 of 57

CMP RA,RB

Operation:
RA -RB

Description:

The contents of the source general purpose register are subtracted from the destination general purpose
register. The condition codes are set according to the result, and the result discarded. The source and
destination registers must be different.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x7, CMP RB RA
RA #RB
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Set if overflow is generated. Cleared otherwise

Not affected

AX|<IN|Z|—
®| %] x| %| %

Set if carry is generated. Cleared otherwise

Example:
RO[8000] R1[2B34] R2[2B35] R3[AGAB] PC[0080] SP[233B] PS[41(..... ID.)]
007F: 65 :CMP R1,R3

RO[8000] R1[2B34] R2[2B35] R3[A6AB] PC[0081] SP[233B] PS[6B(C.V.NID.)]

instruction_set_v0_1.doc Page 19 of 57

DIVS
DIVU

Operation:
if (R1==0)
execute TRAP 1
else
Quotient(R0O / R1) = R2
Remainder(RO / R1) = R3
end if
if (signed operation)
abs(R1) = RI1
end if
Description:

If R1 is zero then TRAP 2 is taken. Otherwise RO / R1 is calculated. The quotient is put in R2, the
remainder. The arithmetic condition flags are cleared.

There are two ways of defining signed division, the difference lying in whether or not negative
remainders are allowed. Both are implemented, the method used is controlled by the D flag.

D=0 D=1
13/3 Q=4,R=1 Q=4,R=1
13/-3 Q=-4R=1 Q=-4R=1
-13/3 Q=-4R=-1 Q=-5R=2
-13/-3 Q=4,R=-1 Q=5R=2
In all cases the following holds:
Dividend = (Quotient x Divisor) + Remainder
Format:
DIVU
DIVS
7 | 6 | 5 | 4 2 1 0
OxF, miscellaneous 1 0 1 sgn
Encoding:
0 1
sgn unsigned signed
Length/Cycles:
1 byte, division by zero is 7 cycles, unsigned is 18 cycles, signed is 19 cycles
Condition Codes:
I - | Not affected
N 0 | Setto zero
Z 0 | Setto zero
\Y 0 | Setto zero
X 0 | Setto zero
C 0 | Setto zero

instruction_set_v0_1.doc Page 20 of 57

Example:

RO[000D] R1[FFFD] R2[DACY9]

0l6l: FA

RO[000D] RI1[FFFD] R2[0000]

0162: FA

RO[000D] R1[0003] R2[FFFC]

0163: DO F3 FF

RO[FFF3] R1[0003] R2[FFFC]

0l66: FA

RO[FFF3] R1[0003] R2[FFFC]

0167: FA 40

RO[FFF3] R1[0003] R2[FFFC]

0169: FA

RO[FFF3] R1[0003] R2[FFFB]

instruction_set_v0_1.doc

Page 21 of 57

INV RA

Operation:

Description:
The general purpose register is set to its bitwise inverse. The condition codes are set according to the
result.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x3, OR RA RA
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared
Example:
RO[0000] R1[0001] R2[FFFF] R3[2223] PC[0073] SP[233B] PS[41(..... ID.)]
0072: 35 : INV R1
RO[0000] R1[848B] R2[FFFF] R3[7B75] PC[0074] SP[233B] PS[43(....NID.)]

instruction_set_v0_1.doc Page 22 of 57

JMP (RO)

Operation:
RO = PC

Description:

The program counter is set to the value in RO.

Format:

7 [6 [5]

(O8]

[\

=)

Code = 0xF, miscellaneous

Length/Cycles:
1 byte; 2 cycles

Condition Codes:

- Not affected

- Not affected

- Not affected

Not affected

- Not affected

QX< IN|Z |~

- Not affected

Example:

RO[010C] R1[002B] R2[552B] R3[5678]

0108: F2 :JMP (RO)

RO[010C] R1[002B] R2[552B] R3[5678]

PC[0109]

PC[010D]

instruction_set_v0_1.doc

Page 23 of 57

JMP absolute

Operation:
address = PC

Description:

The program counter is set to the value of the address operand.

Format:
7 | 6 | 5 | 4 3 2 0
Code = 0xF, miscellaneous 0 0 1
Absolute(7:0)
Absolute(15:8)
Length/Cycles:

3 bytes; 4 cycles

Condition Codes:

1 - Not affected

N - Not affected

Z - Not affected

\'% - Not affected

X - Not affected

C - Not affected
Example:

RO[015E] R1[002B] R2[552B] R3[5678] PC[0110] SP[0068]

010F: F3 18 01 :JMP 0x0118

RO[015E] R1[002B] R2[552B] R3[5678] PC[0119] SP[0068]

instruction_set_v0_1.doc

Page 24 of 57

JSR (RO)

Operation:

Description:

SP-2 = SP
PC+1 = |[SP]
RO = PC

The stack pointer is decremented by two. The address of the next instruction is stored in memory at the
location pointed to by the stack pointer. The program counter is set to the value in RO.

Format:

7]

6 |

5

| 4

=)

Code = 0xC, pushpop

Length/Cycles:
1 byte; 4 cycles

Condition Codes:

Not affected

Not affected

Not affected

Not affected

Not affected

QX< IN|Z |~

Not affected

Example:
0060: 00

RO[015E] R1[002B]

00DC: CE

RO[015E] R1[002B]

0060: 00

:JSR

78 00 78 56 FF 34

R2[552B]
(RO)

R2[552B]

78 00 78 56 2B DD

2B 55 FF

R3[5678]

R3[5678]

00 55 FF

55 DE 55

PC[00DD]

PC[015F]

55 DE 55

55 DE FF

SP[0068]

SP[0066]

55 DE FF

PS[01(

PS[01(

instruction_set_v0_1.doc

Page 25 of 57

JSR absolute

Operation:
SP-2 =SP
PC+1 = [SP]
address = PC
Description:

The stack pointer is decremented by two. The address of the next instruction is stored in memory at the
location pointed to by the stack pointer. The program counter is set to the value of the address operand.

Format:
7 | 6 | 5 | 4 3
Code = 0xC, pushpop 1
Absolute(7:0)
Absolute(15:8)
Length/Cycles:

3 bytes; 6 cycles

Condition Codes:

I - Not affected

N - Not affected

Z - Not affected

A\ - Not affected

X - Not affected

C - Not affected

Example:

0060: 00 78 00 78 56 FF 34 2B 55 FF 55 DE 55
RO[015E] R1[002B] R2[552B] R3[5678] PC[00DD]
00DC: CF 5E 01 :JSR 0x015E

RO[015E] R1[002B] R2[552B] R3[5678] PC[015F]
0060: 00 78 00 78 56 2B DF 00 55 FF 55 DE 55

instruction_set_v0_1.doc

Page 26 of 57

LD immediate data

Operation:
source => destination

Description:

The immediate data is copied into the destination general purpose register. Data transfers may be byte
or word. Words in memory are formatted little-endian. Bytes loaded from memory are zero extended to

fill the destination register.

Format:
LD.SZ RA, #immediate

SZ may be B or W

7 | 6 | 5 | 4 3 2 | 0
Code = 0xD, immediate 0 sz=0 RA
immediate(7:0)
immediate (15:8)
7 | 6 | 5 | 4 3 2 | 0
Code = 0xD, immediate 0 sz=1 RA
immediate (7:0)
Encoding:
0 1
Sz word byte

Length/Cycles:
2 bytes, 2 cycles for a byte transfer; 3 bytes, 3 cycles for a word transfer
Condition Codes:

I - | Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - | Not affected

C 0 | Always cleared
Example:
RO[0031] R1[DE55] R2[00DE] R3[5678] PC[OOAC] SP[0068] PS[41(ID.)]
00AB: D7 6A :LD.B R3, 0x006A
RO[0031] R1[DE55] R2[00DE] R3[006A] PC[OOAE] SP[0068] PS[41(ID.)]
00AD: DO CD AB :LD.W RO, OxABCD
RO[ABCD] R1[DE55] R2[00DE] R3[006A] PC[0O0B1l] SP[0068] PS[43(....NID.)]

instruction_set_v0_1.doc

Page 27 of 57

LD,ST indirect addressing
Operation:

source = destination
Description:

The index register (which may be R2 or R3) points to a memory location. For a load instruction the
contents of the memory location memory are copied to the destination general purpose register which
may be RO or R1. For a store instruction the contents of the source register which may be RO or R1 are
copied to memory. Data transfers may be byte or word. Words in memory are formatted little-endian.
Bytes loaded from memory are zero extended to fill the destination register.

Format:
LD.SZ RC, (RI)
ST.SZ (RI),RC

SZ may be B or W
RC may be RO or R1
RI may be R2 or R3

7 | 6 | 5 | 4 3 2 1 0
Code = 0x8, indirect dir SZ ri rc
Encoding:
0 1
dir LD ST
Sz word byte
ri R2 R3
rc RO R1
Length/Cycles:
1 byte; 2 cycles for a byte transfer, three cycles for a word transfer
Condition Codes:
1 - Not affected
N * Set if MSB set, cleared otherwise
Z * Set if result is zero, cleared otherwise
\Y 0 | Always cleared
X - Not affected
C 0 | Always cleared
Example:
0060: 00 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF
RO[8000] R1[2B34] R2[0064] R3[0066] PC[O00A6] SP[233B] PS[41(..... ID.)]
00A5: 8D :ST.B (R2), R1
RO[8000] R1[2B34] R2[0064] R3[0066] PC[O0A7] SP[233B] PS[41(..... ID.)]
00A6: 8B :ST.W (R3), R1
RO[8000] R1[2B34] R2[0064] R3[0066] PC[O0A8] SP[233B] PS[41(..... ID.)]
00A7: 86 :LD.B RO, (R3)
RO[0034] R1[2B34] R2[0064] R3[0066] PC[00A9] SP[233B] PS[41(..... ID.)]
00AB8: 82 :LD.W RO, (R3)
RO[2B34] R1[2B34] R2[0064] R3[0066] PC[O0AA] SP[233B] PS[41(..... ID.)]
0060: 00 00 00 00 34 FF 34 2B FF FF FF FF FF FF FF FF
instruction_set_v0_1.doc Page 28 of 57

LD, ST

Operation:

post-increment addressing

source => destination
index register = index register + size_of_transfer

Description:

The index register (which may be R2 or R3) points to a memory location. For a load instruction the
contents of the memory location memory are copied to the destination general purpose register which
may be RO or R1. For a store instruction the contents of the source register which may be RO or R1 are
copied to memory. Data transfers may be byte or word. After the transfer has completed the index
register is incremented by one for each byte transferred. Words in memory are formatted little-endian.
Bytes loaded from memory are zero extended to fill the destination register.

Format:
LD.SZ RC, (RI)
ST.SZ (RI),RC

SZ may be B or W

RC may be RO or R1
RI may be R2 or R3
7 | 6 | 5 | 4 3 2 1 0
Code = 0x9, post increment dir SZ ri rc
Encoding:
0 1
dir LD ST
Sz word byte
ri R2 R3
rc RO R1
Length/Cycles:

1 byte; 2 cycles for a byte transfer, three cycles for a word transfer

Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared
Example:

0060: 00 00 00 00 34 FF 34 2B FF FF FF FF FF FF FF FF
RO[ABCD] R1[DE55] R2[0068] R3[006A] PC[00B4] SP[233B] PS[43(....NID.)]
00B3: 9D :ST.B (R2++), R1
RO[ABCD] R1[DE55] R2[0069] R3[006A] PC[00B5] SP[233B] PS[43(....NID.)]
00B4: 9B :ST.W (R3++), R1
RO[ABCD] R1[DE55] R2[0064] R3[006C] PC[00B6] SP[233B] PS[43(....NID.)]
00B5: 94 :LD.B RO, (R2++)
RO[OOFF] R1[DE55] R2[006A] R3[006C] PC[00B7] SP[233B] PS[41(..... ID.)]
00B6: 90 :LD.W RO, (R2+4+)
RO[DES55] R1[DE55] R2[006C] R3[006C] PC[00B8] SP[233B] PS[43(....NID.)]
0060: 00 00 OO0 00 34 FF 34 2B 55 FF 55 DE FF FF FF FF

instruction_set_v0_1.doc

Page 29 of 57

LD,ST stack relative addressing

Operation:
source => destination

Description:

An address is formed as the sum of the stack pointer and an 8 bit unsigned modifier. For a load
instruction the contents of the memory location memory are copied to the destination general purpose
register. For a store instruction the contents of the source general purpose register are copied to
memory. Data transfers may be byte or word. Words in memory are formatted little-endian. Bytes
loaded from memory are zero extended to fill the destination register.

Format:
LD.SZ RA, (SP, mm)
ST.SZ (SP, mm), RA

SZ may be B or W

7 | 6 | 5 | 4 3 2 1 | 0
Code = OxA, stack relative dir Sz RA
mm(7:0)
Encoding:
0 1
dir LD ST
Sz word byte
Length/Cycles:
2 bytes; 3 cycles for a byte transfer, 4 cycles for a word transfer
Condition Codes:
I - | Not affected
N * Set if MSB set, cleared otherwise
Z * Set if result is zero, cleared otherwise
\Y 0 | Always cleared
X - | Not affected
C 0 | Always cleared

Example:
0060: 00 00 00 00 34 FF 34 2B 55 FF 55 DE FF FF FF FF

RO[0031] R1[DE55] R2[006C] R3[006C] PC[O0OBD] SP[0068] PS[41(..... ID.)]
00BC: AD 04 :ST.B (sP, 4), R1

RO[0031] R1[DE55] R2[006C] R3[006C] PC[OOBF] SP[0068] PS[43(....NID.)]
00OBE: A9 05 :ST.W (SpP, 5), R1

RO[0031] R1[DE55] R2[006C] R3[006C] PC[00C1l] SP[0068] PS[43(....NID.)]
00C0: A6 03 :LD.B R2,(SP, 3)

RO[0031] R1[DE55] R2[00DE] R3[006C] PC[00C3] SP[0068] PS[41(..... ID.)]
00C2: A3 03 :LD.W R3, (SP, 3)
RO[0031] R1[DE55] R2[00DE] R3[55DE] PC[00C5] SP[0068] PS[41(..... ID.)]

0060: 00 00 00 OO0 34 FF 34 2B 55 FF 55 DE 55 55 DE FF

instruction_set_v0_1.doc Page 30 of 57

LD,ST absolute addressing
Operation:

source = destination
Description:

The address points to a memory location. For a load instruction the contents of the memory location
memory are copied to the destination general purpose register. For a store instruction the contents of
the source general purpose register are copied to memory. Data transfers may be byte or word. Words
in memory are formatted little-endian. Bytes loaded from memory are zero extended to fill the
destination register.

Format:

LD.SZ RA, address

ST.SZ

SZ may be B or W

address, RA

7 | 6 | 5 | 4 3 2 1 |
Code = 0xB, absolute dir SZ RA
address(7:0)
address(15:8)
Encoding:
0 1
dir LD ST
Sz word byte

Length/Cycles:
3 bytes; 4 cycles for a byte transfer, 5 cycles for a word transfer
Condition Codes:

I - | Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - | Not affected

C 0 | Always cleared
Example:
0060: 00 00 00 00 34 FF 34 2B 55 FF 55 DE 55 55 DE FF
RO[0031] R1[DE55] R2[00DE] R3[5678] PC[O0CA] SP[0068] PS[41(..... ID.)]
00C9: BF 61 00 :ST.B 0x0061, R3
RO[0031] R1[DE55] R2[00DE] R3[5678] PC[00CD] SP[0068] PS[41(..... ID.)]
00CC: BB 63 00 :ST.W 0x0063, R3
RO[0031] R1[DE55] R2[00DE] R3[5678] PC[00DO] SP[0068] PS[41(..... ID.)]
00CF: B5 67 00 :LD.B R1,0x0067
RO[0031] R1[002B] R2[00DE] R3[5678] PC[00D3] SP[0068] PS[41(..... ID.)]
00D2: B2 67 00 :LD.W R2,0x0067
RO[0031] R1[002B] R2[552B] R3[5678] PC[00D6] SP[0068] PS[41(..... ID.)]
0060: 00 78 00 78 56 FF 34 2B 55 FF 55 DE 55 55 DE FF

instruction_set_v0_1.doc

Page 31 of 57

Logical Shift: LSL, LSR

Operation:

RA shifted by amount
weight of n bits of RA

Description:

= RA
= RA

The specified general register is shifted in the given direction for the required number of bits. The last
bit shifted out is copied to C and X. For both left and right shifts the input bit is 0.

The shift amount may be specified in two ways:

1. as an immediate operand, this is a 5 bit signed value. (In the assembler use of the LSR
instruction is translated to LSL and the immediate value is negated to compensate).

2. as aregister, Rp, in which case the least significant 5 bits are used and treated as a signed
value. These 5 bits are negated if the LSR instruction was used.

If the shift count is specified by a register then the instruction may be qualified with .WT. In this case
the number of 1 bits that are shifted out of the least significant bit of the operand are counted and the

result stored in RA.

LSL: | C MSB LSB |[«— 0
X i
Counter
LSR: [o MSB LSB C
—» X
Counter
Format:
LSd RA, #n_to_shift
d may be L or R
7 | 6 | 5 | 4 2 | 0
Code = 0xD, immediate 0 RA
fn=00,logical | I/R=0 | n_to_shift
Lsd RA, Rp
LSd.WT RA, Rp
d may be L or R
7 | 6 | 5 | 4 2 | 0
Code = 0xD, immediate 0 RA
fn = 00, logical | /IR=1 | LR 0 Rp

instruction_set_v0_1.doc

Page 32 of 57

Encoding:

0 1
I/R immediate register
L/R left right
w shift weight

Length/Cycles:
2 bytes, 4 + 1 per shift cycles

Condition Codes — weight not selected:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

v * | Set if MSB changes at any time during shift,
cleared otherwise

X * | Set according to last bit shifted out of operand,
not affected for a shift of zero.

C * | Set according to last bit shifted out of operand,

cleared for a shift of zero.

Condition Codes — weight selected:

Not affected

Always cleared

Set if result is zero, cleared otherwise

Always cleared

Always cleared

QX[<IN Z|—
x|lo|lo| x|lof

Set according to least significant bit of result,
i.e. parity of the n bits of the operand.

Example:
RO[1234]
0189: D8

RO[1234]
018B: D8

RO [48D0]
018D: D8

RO[1234]
018F: D8

RO[48D0]
0191: D9

R0O[48D0]
0193: D9

RO[48D0]
0195: D9

RO [48D0]

R1[9ABC] R2[9AFD] R3[FFFE] PC[018A]
00 :LSL RO, #0

R1[9ABC] R2[9AFD] R3[FFFE] PC[018C]
02 :LSL RO, #2

R1[9ABC] R2[9AFD] R3[FFFE] PC[018E]
23 :LSL RO, R3

R1[9ABC] R2[9AFD] R3[FFFE] PC[0190]
33 :LSR RO, R3

R1[9ABC] R2[9AFD] R3[FFFE] PC[0192]
22 :LSL R1, R2

R1[1357] R2[9AFD] R3[FFFE] PC[0194]
2A :LSL.WT R1, R2

R1[0003] R2[9AFD] R3[FFFE] PC[0196]
2A :LSL.WT R1, R2

R1[0002] R2[9AFD] R3[FFFE] PC[0198]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

PS[02(....N...)]
PS[O00(....n...)]
PS[O0 (...)]
PS[O00(........)]
PS[O0(....n...)]
PS[30(CX......)]
PS[20(C.......)]
PS[O0(..vun..)]

instruction_set_v0_1.doc

Page 33 of 57

MOVE RA,RB

Operation:
RB = RA

Description:

The contents of the source general purpose register are copied to the destination general purpose

register. The condition codes are set according to the data transferred. Only 16 bits transfers are
possible. The source and destination registers must be different.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x0, MOVE RB RA
RA #RB
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Always cleared

- Not affected

QX[<|N|Z|—~
O %[%[

0 | Always cleared

Example:
RO[F059] R1[18ED] R2[41FB] R3[A3C0] PC[67CA] SP[233B] PS[F2(CX..N.DU)]
67C9: 01 :MOVE R1, RO

RO[FO059] R1[FO059] R2[41FB] R3[A3CO0] PC[67CB] SP[233B] PS[D2(.X..N.DU)]

Data Flow:
St. PC Instr Addr. Data ALU 1 ADD 2 H RA RB
end N N [N] PC+1=N+1
O/end | N+l [N] N+1 [N+1] PC+l=N+2 XX YY
0 N+2 | [N+1] N+2 [N+2] XX XX

instruction_set_v0_1.doc

Page 34 of 57

MOVE

Operation:

SP/R0

source => destination

Description:

Either SP is moved to RO, or the reverse depending on the instruction.

Format:
7 | 6 | 5 | 3 2 1 0
Code = 0xF, miscellaneous 0 0 0 mv
Encoding:
0 1
mv RO,SP SP,RO
Length/Cycles:
1 bytes; 2 cycles
Condition Codes:
I - Not affected
N - Not affected
Z - Not affected
A\ - Not affected
X - Not affected
C - Not affected
Example:
RO[015E] R1[002B] R2[552B] R3[5678] PC[O0EE] SP[0068] PS[06(...ZN...)]
00ED: FO :MOVE RO, SP
RO[0068] R1[002B] R2[552B] R3[5678] PC[OOEF] SP[0068] PS[06(...ZN...)]
OOEE: DO 21 83 :MOVE . W RO, #0x8321
RO[8321] R1[002B] R2[552B] R3[5678] PC[00F2] SP[0068] PS[02(....N.)]
00Fl: F1 :AND SP, RO
RO[8321] R1[002B] R2[552B] R3[5678] PC[00F3] SP[8321] PS[06(....N...)]

instruction_set_v0_1.doc

Page 35 of 57

MULS, MULU

Operation:
LSW(ROxR1) = R2
MSW(ROxR1) = R3
if (signed multiplication)
if (RO <0)
0 = RO
end if
if (R1 <0)
RO+R1= RO
end if
end if
Description:

The product of RO and R1 is calculated. The least significant 16 bits of the result are placed in R2, the
most significant 16 bits are placed in R3. The arithmetic condition flags are cleared. If the operation is
signed multiplication then RO will be replaced by the sum of those contents of RO and R1 that are
negative.

Format:
MULU
MULS
7 | 6 | 5 | 4 2 1 0
OxF, miscellaneous 1 0 0 sgn
Encoding:
0 1
sgn unsigned signed

Length/Cycles:

1 byte, unsigned is 18 cycles, signed is 19 cycles
Condition Codes:

I - Not affected

N 0 Set to zero

Z 0 Set to zero

\'% 0 Set to zero

X 0 Set to zero

C 0 Set to zero
Example:
RO[0123] R1[CAFE] R2[0006] R3[0000] PC[0151] SP[8321] PS[O0(«uue.un...)]
0150: F8 :MULU
RO[0123] R1[CAFE] R2[BEBA] R3[00E6] PC[0152] SP[8321] PS[O00(........)]
0151: F9 :MULS
RO[0123] R1[CAFE] R2[BEBA] R3[FFC3] PC[0153] SP[8321] PS[O00(.ue.eon..)]

instruction_set_v0_1.doc Page 36 of 57

NEG

Operation:

RA

= RA

Description:
The contents of the source general purpose register are negated. The condition codes are set according
to the result. Applying this instruction to a register with the value of 0x8000 will produce a result of

0x8000 and set the overflow flag.
Format:
7 | 6 | 5 | 4 3 | 1 | 0
Code = 0x6, SUB RA RA

Length/Cycles:
1 byte, 1 cycle
Condition Codes:

| - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y * | Setif overflow is generated. Cleared otherwise

X * | As per carry bit.

C * | Setif carry is generated. Cleared otherwise
Example:
RO[8000] R1[2B34] R2[FFFF] R3[A6AB] PC[007A] SP[233B] PS[53(.X..NID.)]
0079: 65 :NEG R1
RO[8000] R1[D4CC] R2[FFFF] R3[A6AB] PC[007B] SP[233B] PS[73(CX..NID.)]
007A: 65 :NEG R2
RO[8000] R1[D4CC] R2[0001] R3[A6AB] PC[007C] SP[233B] PS[71(CX...ID.)]
007B: 65 :NEG RO
RO[8000] R1[D4CC] R2[0001] R3[A6AB] PC[007D] SP[233B] PS[7B(CXV.NID.)]

instruction_set_v0_1.doc

Page 37 of 57

NEGX RO

Operation:
0-RO-X = RO

Description:
The contents RO and the X flag are subtracted from O and the result is stored in R0O. The condition
codes are set according to the result.

Format:
7 | 6 | 5 | 4 3 2 1 0
Code = 0xF, miscellaneous 1 1 1 0
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Cleared if result is non-zero, otherwise unchanged

Set if overflow is generated. Cleared otherwise

As per carry bit.

Qx| <|IN|Z|—
w| %] %] %] %]

Set if carry is generated. Cleared otherwise

NB. If the Z flag is set before the start of an operation then it will achieve correct test for a zero result
after completing an extended precision operation.

Example:

RO[151A] R1[002B] R2[552B] R3[5678] PC[0104] SP[8321] PS[00(........)1
0103: FE :NEGX RO, R1

RO[EAE6] R1[002B] R2[552B] R3[5678] PC[0105] SP[8321] PS[32(CX..N...)]
0104: FE :NEGX RO, RI1

RO[1519] R1[002B] R2[552B] R3[5678] PC[0106] SP[8321] PS[30(CX......)1

instruction_set_v0_1.doc Page 38 of 57

NOP

Operation:
none

Description:
This instruction does nothing.

Currently opcode 0xCS5 is not used and so is also mapped to NOP.

Format:
7 | 6 | 5 | 4 3 1 0
Code = 0xF, miscellaneous 1 1 1
7 | 6 | 5 | 4 3 1 0
Code = 0xC, pushpop 0 0 1
Length/Cycles:
1 bytes; 1 cycle
Condition Codes:
I - Not affected
N - Not affected
Z - Not affected
A\ - Not affected
X - Not affected
C - Not affected
Example:
RO[010C] R1[002B] R2[552B] R3[5678] PC[011E] PS[23(C...NI..
011D: FF :NOP

RO[010C] R1[002B] R2[552B] R3[5678]

PC[011F]

PS[23(C...NI..

instruction_set_v0_1.doc

Page 39 of 57

OR RA, RB

Operation:
RA |RB = RA

Description:

The bitwise or of the source and destination general purpose registers is written to the destination
register. The condition codes are set according to the result. The source and destination registers must
be different.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x3, OR RB RA
RA #RB
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Always cleared

- Not affected

QX[<|N|Z|—~
O %[%[

0 | Always cleared

Example:
RO[0000] R1[848B] R2[FFFF] R3[7B75] PC[0074] SP[233B] PS[43(....NID.)]
0073: 37 :OR R3,R1

RO[0000] R1[848B] R2[FFFF] R3[A6AB] PC[0075] SP[233B] PS[43(....NID.)]

instruction_set_v0_1.doc Page 40 of 57

OR PS, #immediate data

Operation:
PS Il data = PS

Description:
The immediate value is ORed with the PS register.

Format:
7 | 6 | 5 | 4 3 1
Code = 0xF, miscellaneous 0 1 0
Imm(7:0)
Length/Cycles:

2 bytes; 2 cycles

Condition Codes:

* | Set as per result of operation

Set as per result of operation

Set as per result of operation

Set as per result of operation

Set as per result of operation

Qx| <|IN|Z|—
®| %] %] %| %

Set as per result of operation

Example:

RO[015E] R1[002B] R2[552B] R3[5678] PC[O0OEA] SP[0068] PS[23(C...NI.

00E9: F5 04 :OR PS, #0x04

RO[015E] R1[002B] R2[552B] R3[5678] PC[O0EC] SP[0068] PS[27(C..ZNI..

)]

)]

instruction_set_v0_1.doc

Page 41 of 57

PUSH, POP

Operation:

Description:

source => destination

For a push instruction the stack pointer is decremented by one for a byte sized register (PS) or by two

for a word register (RA). The register is then stored at the address pointed to by the stack pointer.

For a pop instruction the register is loaded from the address pointed to by the stack pointer. The stack
pointer is then incremented by one for the byte sized register (PS) or by two for a word sized register

(RA).
Format:
PUSH RA
POP RA
7 | 6 | 5 | 3 2 1 | 0
Code = 0xC, pushpop dir 0 RA
PUSH PS
POP PS
7 | 6 | 5 | 3 2 1 0
Code = 0xC, pushpop dir 1 0 0
Encoding:
0 1
dir POP PUSH
Length/Cycles:
1 byte; 2 cycles for a byte transfer (PS), 3 cycles for a word transfer (RA)
Condition Codes:
For PUSH/POP RA :
| - Not affected
N * Set if MSB set, cleared otherwise
Z * Set if result is zero, cleared otherwise
\Y 0 | Always cleared
X - Not affected
C 0 | Always cleared
For PUSH PS:
| - Not affected
N - Not affected
Z - Not affected
\ - Not affected
X - Not affected
C - | Not affected

instruction_set_v0_1.doc

Page 42 of 57

For POP PS:

%

Loaded from memory

Loaded from memory

Loaded from memory

Loaded from memory

Loaded from memory

QX[<|N|Z |~
w| | %] %] %

Loaded from memory

Example:
0060: 00

RO[0031]
00D5: CC

RO[0031]
00D6: CA

RO[0031]
00D7: C4

RO[0031]
00D8: CO

RO[4155]

0060: 00

78 00 78 56 FF 34

R1[002B] R2[552B]
:PUSH PS

R1[DE55] R2[006C]
:PUSH R2

R1[DE55] R2[006C]
:POP PS

R1[DE55] R2[00DE]
:POP RO

R1[DE55] R2[00DE]

78 00 78 56 2B 55

2B 55 FF

R3[5678]

R3[006C]

R3[006C]

R3[006C]

R3[55DE]

41 55 FF

55 DE 55

PC[00D6]

PC[00D7]

PC[00D8]

PC[00D9]

PC[0O0DA]

55 DE 55

55 DE FF

SP[0068]

SP[0067]

SP[0065]

SP[0066]

SP[0068]

55 DE FF

PS[41(

PS[41(

PS[41(

PS[2B(C.V.NI..

PS[01(

instruction_set_v0_1.doc

Page 43 of 57

RET

Operation:

[SP]

= PC

SP+2 = SP

Description:
The word in memory pointed to by the stack pointer is loaded into the program counter. The stack

pointer is then incremented by 2. This is the complement of the JSR instructions and is used to return
from a subroutine.

Format:

7

[6 |

5

| 4

w

S

Code = 0xC, pushpop

Length/Cycles:
1 byte; 4 cycles

Condition Codes:

Not affected

Not affected

Not affected

Not affected

Not affected

QX< IN|Z |~

Not affected

Example:
0060: 00

RO[015E]
015E: C6

RO[015E]

0060: 00

78 00 78 56 2B DF

R1[002B] R2[552B]

:RET

R1[002B] R2[552B]

78 00 78 56 2B DF

00 55 FF

R3[5678]

R3[5678]

00 55 FF

55 DE 55

PC[015F]

PC[00EO]

55 DE 55

instruction_set_v0_1.doc

Page 44 of 57

RETI

Operation:
[SP] = PS
SP+1 = SP
[SP] = PC
SP+2 = SP
Description:

The byte pointed to by the stack pointer is loaded into PS. The stack pointer is then incremented by
one. The word in memory pointed to by the stack pointer is loaded into the program counter. The stack
pointer is then incremented by 2. This is the complement of the TRAP and interrupt operations and is
used to return from an exception handler.

Format:
7 | 6 | 5 | 4 3 1
Code = 0xC, pushpop 0 1 1 1
Length/Cycles:

1 byte; 5 cycles

Condition Codes:

* | Loaded from memory

Loaded from memory

Loaded from memory

Loaded from memory

Loaded from memory

Qx| <|IN|Z|—
®| %] %] %| %

Loaded from memory

Example:
0060: 00 78 00 78 56 01 EO 00 55 FF 55 DE 55 55 DE FF

RO[015E] R1[002B] R2[552B] R3[5678] PC[015F] SP[0065] PS[O0(........)]
000C: C7 :RETI
RO[015E] R1[002B] R2[552B] R3[5678] PC[O00E1l] SP[0068] PS[OLl(..... I..)]

0060: 00 78 00 78 56 01 EO 00 55 FF 55 DE 55 55 DE FF

instruction_set_v0_1.doc Page 45 of 57

Rotate: ROL, ROR

Operation:
RA rotated by amount = RA
weight of n bits of RA = RA

Description:

The specified general register is rotated in the given direction for the required number of bits. The last
bit rotated out of the operand (MSB if rotating left, LSB if rotating right) copied to C. X is not affected.

The shift amount may be specified in two ways:

1. as an immediate operand, this is a 5 bit signed value. (In the assembler use of the ROR

instruction is translated to ROL and the immediate value is negated to compensate).

2. as aregister, Rp, in which case the least significant 5 bits are used and treated as a signed

value. These 5 bits are negated if the ROR instruction was used.

If the shift count is specified by a register then the instruction may be qualified with .WT. In this case
the number of 1 bits that are rotated out of the least significant bit of the operand are counted and the

result stored in RA.

v

ROL: C [«<— MSB LSB
Counter
ROR: | ¢ |¢—» MSB LSB
\ 4
Counter
Format:
ROd RA, #n_to_shift
d may be L or R
7 | 6 | 5 | 4 2 1 | 0
Code = 0xD, immediate 0 RA
fn = 10, rotate | I/R=0 | n_to_shift
ROd RA, Rp
ROdA.WT RA, Rp
d may be L or R
7 | 6 | 5 | 4 2 1 | 0
Code = 0xD, immediate 0 RA
fn = 10,rotate |)IR=1 | LR 0 Rp

instruction_set_v0_1.doc

Page 46 of 57

Encoding:

0 1
I/R immediate register
L/R left right
w shift weight

Length/Cycles:
2 bytes, 4 + 1 per shift cycles

Condition Codes — weight not selected:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Always cleared

Not affected

Qx| <N Z |~
O *| %[

*|

Set according to last bit rotated out operand,
cleared for a shift of zero.

Condition Codes — weight selected:

Not affected

Always cleared

Set if result is zero, cleared otherwise

Always cleared

Always cleared

QX[<|N|Z|~
x|lo|lo| x|

Set according to least significant bit of result,

i.e. parity of the n bits of the operand.

Example:
RO[1234]
01BD: D8

RO[1234]
01BF: D8

RO[1A09]
01Cl: D8

RO[4682]
01C3: D8

RO[1A09]
01C5: D9

RO[1A09]
01C7: D9

RO[1A09]
01C9: D9

RO[1A09]

R1[9ABC] R2[9AFD] R3[FFFE] PC[01BE]
80 :ROL RO, #0
R1[9ABC] R2[9AFD] R3[FFFE] PC[01CO0]
87 :ROL RO, #7
R1[9ABC] R2[9AFD] R3[FFFE] PC[01C2]
A3 :ROL RO, R3
R1[9ABC] R2[9AFD] R3[FFFE] PC[01C4]
B3 :ROR RO, R3
R1[9ABC] R2[9AFD] R3[FFFE] PC[01C6]
A2 :ROL R1, R2
R1[9357] R2[9AFD] R3[FFFE] PC[01C8]
AR :ROL.WT R1, R2
R1[0003] R2[9AFD] R3[FFFE] PC[01CA]
AA :ROL.WT R1, R2
R1[0002] R2[9AFD] R3[FFFE] PC[01CC]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

SP[8321]

PS[02(N)]
PS[00(euuennnn.)]
PS[20(C.uv.u...)1
PS[00(euuennnn.)]
PS[20(C.wv.u...)1
PS[22(C...N)]
PS[20(C.u.u...)1
PS[00(euuvnnnn.)1

instruction_set_v0_1.doc

Page 47 of 57

eXtended Rotate: ROXL, ROXR

Operation:

RA rotated by amount
weight of n bits of RA

Description:

= RA
= RA

The specified general register is rotated in the given direction for the required number of bits. The X bit
is included in the rotation. The last bit rotated out of the operand (MSB if rotating left, LSB if rotating

right) copied to C and X.

The shift amount may be specified in two ways:
1. as an immediate operand, this is a 5 bit signed value. (In the assembler use of the ROXR
instruction is translated to ROXL and the immediate value is negated to compensate).
2. as aregister, Rp, in which case the least significant 5 bits are used and treated as a signed
value. These 5 bits are negated if the ROXR instruction was used.

If the shift count is specified by a register then the instruction may be qualified with .WT. In this case
the number of 1 bits that are rotated out of the least significant bit of the operand are counted and the

result stored in RA.

ROXL: | ¢ MSB LSB X
Counter
ROXR: | ¢ X MSB LSB
Counter
Format:
ROXd RA, #n_to_shift
d may be L or R
7 | 6 | 5 | 4 2 1 | 0
Code = 0xD, immediate 0 RA
fn=11,Xrotate | I/R=0 | n_to_shift
ROXd RA, Rp
ROXd.WT RA, Rp
d may be L or R
7 | 6 | 5 | 4 2 1 | 0
Code = 0xD, immediate 0 RA
fn=11,Xrotate | I/R=1 | LR 0 Rp

instruction_set_v0_1.doc

Page 48 of 57

Encoding:

0 1
I/R immediate register
L/R left right
w shift weight

Length/Cycles:
2 bytes, 4 + 1 per shift cycles

Condition Codes — weight not selected:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Always cleared

X <IN|Z |~

* || *| %]

Set according to last bit rotated out operand,
not affected for a shift by zero

@
*

Set according to last bit rotated out operand,
cleared for a shift by zero.

Condition Codes — weight selected:

Not affected

Always cleared

Set if result is zero, cleared otherwise

Always cleared

Always cleared

QX[<|N|Z|~
xlolo| x|

Set according to least significant bit of result,
i.e. parity of the n bits of the operand.

Example:

RO[1234] R1[9ABC] R2[9AFD] R3[FFFE] PC[01D8] SP[8321] PS[02(....N...)]
01D7: D8 CO :ROXL RO, #0

RO[1234] R1[9ABC] R2[9AFD] R3[FFFE] PC[O01DA] SP[8321] PS[O00(..e......)]
01D9: D8 C7 :ROXL RO, #7

RO[1A04] R1[9ABC] R2[9AFD] R3[FFFE] PC[01DC] SP[8321] PS[30(CX......)1
01DB: D8 E3 :ROXL RO, R3

RO[4681] R1[9ABC] R2[9AFD] R3[FFFE] PC[O01DE] SP[8321] PS[O00(........)]
01DD: D8 F3 :ROXR RO, R3

RO[1A04] R1[9ABC] R2[9AFD] R3[FFFE] PC[01E0] SP([8321] PS[30(CX......)1
01DF: D9 E2 : ROXL R1, R2

RO[1A04] R1[3357] R2[9AFD] R3[FFFE] PC[01lE2] SP[8321] PS[30(CX......)]
01El: D9 EA :ROXL.WT R1, R2

RO[1A04] R1[0003] R2[9AFD] R3[FFFE] PC[01lE4] SP[8321] PS[20(C.......)]
01E3: D9 EA :ROXL.WT R1, R2

RO[1A04] R1[0002] R2[9AFD] R3[FFFE] PC[01lE6] SP[8321] PS[O00(........)1

instruction_set_v0_1.doc Page 49 of 57

SQRT

Operation:
L vR1] = RO
R1-RO = RI1
0 = R3
Description:

The square root of R1 (rounded down) is calculated and stored in RO. The error is stored in R1. R3 is
set to zero. The arithmetic condition flags are cleared.

Format:
7 | 6 | 5 | 4 3 1
OxF, miscellaneous 0 1 1 1
Length/Cycles:
1 byte, 18 cycles
Condition Codes:
I - Not affected
N 0 Set to zero
Z 0 Set to zero
A\ 0 Set to zero
X 0 Set to zero
C 0 Set to zero
Example:
RO[0002] R1[1705] R2[0006] R3[5678] PC[014A] SP[8321] PS[10(.X......)]
0149: F7 :SQORT R1
RO[004C] R1[0075] R2[0006] R3[0000] PC[014B] SP[8321] PS[O00(........)]

instruction_set_v0_1.doc Page 50 of 57

St

For store instructions see Ld, St.

instruction_set_v0_1.doc Page 51 of 57

SUB RA, RB

Operation:
RA -RB = RA

Description:

The contents of the source general purpose register are subtracted from the destination general purpose
register. The condition codes are set according to the result. The source and destination registers must
be different.

Format:
7 | 6 | 5 | 4 3 | 2 1 | 0
Code = 0x6, SUB RB RA
RA #RB
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Set if result is zero, cleared otherwise

Set if overflow is generated. Cleared otherwise

As per carry bit.

QX |<|IN|Z|—
®| %] %] %| %

Set if carry is generated. Cleared otherwise

Example:
RO[8000] R1[D4CC] R2[0001] R3[A6AB] PC[007D] SP[233B] PS[7B(CXV.NID.)]
007C: 65 : SUB R2,R1

RO[8000] R1[D4CC] R2[2B35] R3[A6AB] PC[007E] SP[233B] PS[71(CX...ID.)]

instruction_set_v0_1.doc Page 52 of 57

SUBX RO, R1

Operation:
RO-R1-X = RO

Description:
The contents R1 and the X flag are subtracted from RO and the result is stored in RO. The condition
codes are set according to the result.

Format:
7 | 6 | 5 | 4 1
Code = 0xF, miscellaneous 1 1 0 1
Length/Cycles:

1 byte, 1 cycle

Condition Codes:

Not affected

Set if MSB set, cleared otherwise

Cleared if result is non-zero, otherwise unchanged

Set if overflow is generated. Cleared otherwise

As per carry bit.

Qx| <|IN|Z|—
w| %] %] %] %]

Set if carry is generated. Cleared otherwise

NB. If the Z flag is set before the start of an operation then it will achieve correct test for a zero result
after completing an extended precision operation.

Example:

RO[151A] R1[002B] R2[552B] R3[5678] PC[00F8] SP[8321] PS[10(.X......)1
00FE: FD :SUBX RO,R1

RO[14EE] R1[002B] R2[552B] R3[5678] PC[00F9] SP[8321] PS[00(........)]
00FF: FD :SUBX RO, RI1

RO[14C3] R1[002B] R2[552B] R3[5678] PC[O0FA] SP([8321] PS[00(........)1

instruction_set_v0_1.doc Page 53 of 57

SXT

Operation:

Description:

RA

sxt(RA)

= RA

The sign bit (bit 7) of the low byte of a general purpose register is replicated through the upper byte.
The condition codes are set according to the new value of the register.

Format:
7 | 6 | 5 | 4 3 | 1 | 0
Code = 0x0, MOVE RA RA

Length/Cycles:
1 byte, 1 cycle
Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared
Example:
RO[F059] R1[00A2] R2[41FB] R3[A3C0] PC[67CA] SP[233B] PS[CO(...... DU)]
67C9: 05 : SXT R1
RO[F059] R1[FFA2] R2[41Fb] R3[A3C0] PC[67CB] SP[233B] PS[C2(....N.DU)]
Example:
RO[F059] R1[0074] R2[41FB] R3[A3C0] PC[67CA] SP[233B] PS[42(....N.D.)]
67C9: 05 : SXT R1
RO[F059] R1[0074] R2[41FB] R3[A3C0] PC[67CB] SP[233B] PS[40(...... D.)]

instruction_set_v0_1.doc

Page 54 of 57

TEST RA
Operation:

PS set according to RA
Description:

The flags are set according to the contents of the source general purpose

Format:
7 | 6 | 5 | 4 3 | 1 | 0
Code = 0x1, AND RA RA

Length/Cycles:
1 byte, 1 cycle
Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared
Example:
RO[0000] R1[0001] R2[FFFF] R3[7B75] PC[006B] SP[233B] PS[43(..NID.)]
006A: 10 :TEST RO
RO[0000] R1[0001] R2[FFFF] R3[7B75] PC[006C] SP[233B] PS[45(Z.ID.)]
006B: 15 :TEST RI1
RO[0000] R1[0001] R2[FFFF] R3[7B75] PC[006D] SP[233B] PS[41(..... ID.)]
006C: 1A :TEST R2
RO[0000] R1[0001] R2[FFFF] R3[7B75] PC[006E] SP[233B] PS[43(..NID.)]

instruction_set_v0_1.doc

Page 55 of 57

TRAP

Operation:
SP-1 =SP
PS = [SP]
0 =1
SP-2 =SP
PC+1 = [SP]
address = PC

Description:

The stack pointer is decremented by two. The address of the next instruction is stored in memory at the
location pointed to by the stack pointer. The stack pointer is decremented by one. The PS is stored in
memory at the location pointed to by the stack pointer. The interrupt flag is cleared. The program
counter is set to 0x000C.

Format:

7 | e 1 5 | 4

O =

Code = 0xC, pushpop 1 1 1

Length/Cycles:
1 byte; 6 cycles

Condition Codes:

0 | Always cleared

- Not affected

- Not affected

Not affected

- Not affected

QX< IN|Z |~

- Not affected

Example:
0060: 00 78 00 78 56 FF 34 2B 55 FF 55 DE 55 55 DE FF

RO[015E] R1[002B] R2[552B] R3[5678] PC[O00EO] SP[0068] PS[OLl(..... I..)]
00DF: CD :TRAP #3

RO[015E] R1[002B] R2[552B] R3[5678] PC[000D] SP[0066] PS[O0(........)]

0060: 00 78 00 78 56 01 EO 00 55 FF 55 DE 55 55 DE FF

instruction_set_v0_1.doc Page 56 of 57

XOR RA,RB

Operation:
RB "RA = RA

Description:

The exclusive or of the source and destination general purpose registers is written into the destination.
The condition codes are set according to the result. The source and destination registers may be the
same.

Format:

7 | 6 1 5 | 4 3] 2 1 1 [o

Code = 0x2, XOR RB RA

CLR RA is an alias for XOR RA, RA

Length/Cycles:
1 byte, 1 cycle

Condition Codes:

1 - Not affected

N * Set if MSB set, cleared otherwise

Z * Set if result is zero, cleared otherwise

\Y 0 | Always cleared

X - Not affected

C 0 | Always cleared

Example:

RO[0000] R1[0001] R2[FFFF] R3[7B75] PC[006E] SP[233B] PS[43(....NID.)]
006D: 2D : XOR R1,R3

RO[0000] R1[7B74] R2[FFFF] R3[7B75] PC[006F] SP[233B] PS[41(..... ID.)]
006E: 2F :CLR R3

RO[0000] R1[7B74] R2[0000] R3[0000] PC[0070] SP[233B] PS[45(...Z.ID.)]

instruction_set_v0_1.doc Page 57 of 57

