

Megaprocessor

--

Assembler User Guide

May 2016

James Newman

1. Introduction
The assembler for the Megaprocessor is a Windows application. It can be downloaded from

www.megaprocessor.com. It runs in a command prompt window (DOS box) with the command line:

MPasm <root_name>

The source file should be root_name.asm. The assembler will produce two files:

 root_name.hex : the image including both code and data in Intel Hex format

 root_name.lst : a listing showing machine code produced

The .hex file can be loaded into the simulator (available at www.megaprocessor.com and also

downloaded to the Megaprocessor itself.

Several example programs will have been included in the zip file for the assembler:

opcodes.asm Example of all instructions and some of the assembler directives
snail.asm Clears the internal ram and the runs a “snail” up and down it. (This was

my first “substantive” program.)
life.asm Implementation of John Conways “Game of Life”. Implementation of the

video game. Uses the discrete RAM LEDs for a display.
tetris.asm Implementation of the video game. Uses the discrete RAM LEDs for a

display.
tic_tac_toe_2.asm Implementation of tic-tac-toe (noughts and crosses). Uses the discrete

RAM LEDs for a display.

Note that at time of writing (May 2016) these have only been run in the simulator, not yet on actual

hardware.

http://www.megaprocessor.com/
http://www.megaprocessor.com/

2. Usage

 comments a.
Comments are introduced with //. All following text to the end of the line is ignored. e.g.

 ld.w r1,prev_key;

 cmp r0,r1;

 bne do_key_press; // a different key

 // same key...is it time for auto repeat

 ld.w r1,TIME_BLK_COUNTER;

 labels b.
An assembler statement defining either code or data can start with a label which is indicated by

following it with a colon character “:”. e.g.

key_was_pressed:

 ld.w r1,prev_key;

It takes the value of the address location at the start of the code/data defined.

 constants c.
Constants can be defined using the EQU keyword. e.g.

// register locations for the GPIO...

GEN_IO_OUTPUT equ GEN_IO_BASE + 0;

GEN_IO_INPUT equ GEN_IO_BASE + 2;

GEN_IO_CTR equ GEN_IO_BASE + 4;

 Radix d.
By default numbers are treated as being decimal. To define a hexadecimal number prefix it with 0x,

to define a binary number prefix it with 0b. e.g.

 db 1,2,3,4,0b1010;

 dw 21,500,0xdeadbeef,0xCAFe;

 location e.
The current memory location can be accessed with the pseudo-variable $. e.g.

end_of_variables equ $;

The current location can be changed to a new value using the org directive. e.g.

// tables and variables....

 org 0x10;

 include f.
An assembler file can include another. For example :

// *************************************

// Start with shared definitions...

include "Megaprocessor_defs.asm";

// *************************************

 data g.
There are several directives for creating space for variables. DB, DW, DL define space for bytes,

words and longs respectively. If no initialisation value is provided then space for one variable is

created. Several variables of a given size can be created by providing initialisation data for each using

a comma separated list. The DM directive inserts a message (string) as a sequence of bytes. e.g.

 db 1,2,3,4,0b1010;

 dw 21,500,0xdeadbeef,0xCAFe;

 dl 0x12345678, 0xdeadbeef;

 dm "Hi there";

produces the listing

 1: 333 [0197] 00 - db;

 1: 334 [0198] 01 02 03 04 0A - db 1,2,3,4,0b1010;

 1: 335 [019D] 15 00 F4 01 EF BE FE CA - dw 21,500,0xdeadbeef,0xCAFe;

 1: 336 [01A5] 78 56 34 12 EF BE AD DE - dl 0x12345678, 0xdeadbeef;

 1: 337 [01AD] 48 69 20 74 68 65 72 65 - dm "Hi there";

Alternately an arbitrary amount of space can be allocated with the DS directive. An optional

initialisation value (byte sized) may be provided.

 ds 10; // allocate 10 bytes

 ds 20, 55; // 20 bytes filled with 55

